刷题宝
  • 刷题首页
题库 高中数学

题干

如图,在各棱长均为2的三棱柱中,侧面底面,.

(1)求侧棱与平面所成角的正弦值;
(2)已知点满足,那么在直线上是否存在点,使平面?若存在,请确定点的位置;若不存在,请说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2019-05-05 09:26:06

答案(点此获取答案解析)

同类题1

如图,在四棱锥P­ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.问:在棱PD上是否存在一点E,使得CE∥平面PAB?若存在,求出E点的位置;若不存在,请说明理由.

同类题2

如图,正方体的棱长为,点为的中点.
(1)证明:平面;
(2)求二面角的余弦值.

同类题3

如图,正方形的边长为2,,分别为的中点,与交于点,将沿折起到的位置,使平面平面.

(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.

同类题4

下列四个说法:
①若向量是空间的一个基底,则也是空间的一个基底.
②空间的任意两个向量都是共面向量.
③若两条不同直线的方向向量分别是,则∥∥.
④若两个不同平面的法向量分别是且,则∥.
其中正确的说法的个数是( )
A.1B.2C.3D.4
相关知识点
  • 空间向量与立体几何
  • 空间向量与立体几何
  • 空间向量的应用
  • 空间位置关系的向量证明
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)