刷题首页
题库
高中数学
题干
四面体
ABCD
及其三视图如图所示,过棱
AB
的中点
E
作平行于
AD
,
BC
的平面分别交四面体的棱
BD
,
DC
,
CA
于点
F
,
G
,
H
.
(1)证明:四边形
EFGH
是矩形;
(2)求直线
AB
与平面
EFGH
夹角
的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-08-29 06:09:11
答案(点此获取答案解析)
同类题1
如图在正三角形
中,
,
,
分别为各边的中点,
,
,
,
分别为
、
、
、
的中点,将
沿
、
、
折成三棱锥以后,
与
所成角的大小为__________.
同类题2
如图,边长为
的正
的中线
与中位线
相交于
,已知
是
绕
旋转过程中的一个图形,现给出下列命题,其中正确的命题有
___________
(只需填上正确命题的序号).
①动点
在平面
上的射影在线段
上;
②三棱锥
的体积有最大值;
③恒有平面
平面
;
④异面直线
与
不可能互相垂直;
⑤异面直线
与
所成角的取值范围是
.
同类题3
已知直角梯形
中,
,
,
,
,
,如图1所示,将
沿
折起到
的位置,如图2所示.
(1)当平面
平面
时,求三棱锥
的体积;
(2)在图2中,
为
的中点,若线段
,且
平面
,求线段
的长;
同类题4
是从
点引出的三条射线,每两条夹角都是
,那么直线
与平面
所成角的余弦值是( )
A.
B.
C.
D.
同类题5
如图所示,在四棱锥
中,底面
为矩形,
平面
分别为
的中点.
(1)求证:
;
(2)
为线段
上一点,若
平面
,求
的值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的性质
线面垂直证明线线垂直