刷题首页
题库
高中数学
题干
如图,四棱锥
中,底面
为梯形,
底面
,
.过
作一个平面
使得
平面
.
(1)求平面
将四棱锥
分成两部分几何体的体积之比;
(2)若平面
与平面
之间的距离为
,求直线
与平面
所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-07 02:34:00
答案(点此获取答案解析)
同类题1
如图,四棱锥
的底面是一直角梯形,
,
,
,
底面
,
为
的中点,则
与平面
的位置关系为
________
.
同类题2
如图,在直三棱柱
中,
,
,
,
分别是
的中点.
(1)求证:
平面
;
(2)求平面
与平面
所成的锐二面角的余弦值.
同类题3
如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD=4,AB=3,点E为线段PD的中点.
(Ⅰ)求证:PB∥平面AEC;
(Ⅱ)求证:AE⊥PC;
(Ⅲ)求三棱锥P-ACE的体积.
同类题4
如图所示,四棱锥
的底面是边长为1的正方形,侧棱
底面
,且
,
是侧棱
上的动点.
(1)求四棱锥
的体积;
(2)如果
是
的中点,求证:
平面
;
(3)不论点
在侧棱
的任何位置,是否都有
?证明你的结论.
同类题5
已知正方形的边长为
分别为
的中点,以
为棱将正方形
折成如图所示的
的二面角,点
在线段
上.
(1)若
为
的中点,且直线
,由
三点所确定平面的交点为
,试确定点
的位置,并证明直线
平面
;
(2)是否存在点
,使得直线
与平面
所成的角为
;若存在,求此时二面角
的余弦值,若不存在,说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行