刷题首页
题库
高中数学
题干
如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB=BC=CA=AP=2,G是△ABC重心,E是线段PC上一点,且CE=λCP.
(1)当EG∥平面PAB时,求λ的值;
(2)当直线CP与平面ABE所成角的正弦值为
时,求λ的值.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-24 04:08:52
答案(点此获取答案解析)
同类题1
如图,在直角梯形
中,
,
,
,
,
,点
在
上,且
,将
沿
折起,使得平面
平面
(如图).
为
中点.
(1)求证:
平面
;
(2)求四棱锥
的体积;
(3)在线段
上是否存在点
,使得
平面
?若存在,求
的值;若不存在,请说明理由.
同类题2
对于平面
和共面的直线
,下列命题中真命题的是()
A.若
与
所成的角相等,则
;
B.若
,则
C.若
,则
D.若
,则
同类题3
如图,在三棱台
ABC
﹣
A
1
B
1
C
1
中,底面
ABC
是边长为2的等边三角形,上、下底面的面积之比为1:4,侧面
A
1
ABB
1
⊥底面
ABC
,并且
A
1
A
=
A
1
B
1
,∠
AA
1
B
=90°.
(1)平面
A
1
C
1
B
∩平面
ABC
=
l
,证明:
A
1
C
1
∥
l
;
(2)求平面
A
1
C
1
B
与平面
ABC
所成二面角的正弦值.
同类题4
若直线与平面平行,则该直线与平面内的任一直线的位置关系是______.
同类题5
如图,正方体ABCD
A
1
B
1
C
1
D
1
的棱长为1,P为BC的中点,Q为线段CC
1
上的动点,过点A,P,Q的平面截该正方体所得的截面记为S。则下列命题正确的是
(写出所有正确命题的编号).
①当0<CQ<
时,S为平行四边形;
②当CQ=
时,S为等腰梯形;
③当CQ=
时,S与C
1
D
1
的交点R满足C
1
R=
④当CQ=1时,S的面积为
。
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的性质