刷题首页
题库
高中数学
题干
如图,在正方体
中,点
是底面
的中心,
是线段
的上一点.
(1)若
为
的中点,求直线
与平面
所成角的正弦值;
(2)能否存在点
使得平面
平面
,若能,请指出点
的位置关系,并加以证明;若不能,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-22 08:30:06
答案(点此获取答案解析)
同类题1
如图,在直三棱柱
中,
是线段
上一点.
点.
(1)确定
的位置,使得平面
平面
;
(2)若
平面
,设二面角
的大小为
,求证:
同类题2
已知三棱锥
中,
,
,点
在底面
上的射影为
的中点,若该三棱锥的体积为
,那么当该三棱锥的外接球体积最小时,该三棱锥的高为( )
A.2
B.
C.
D.3
同类题3
如图,在梯形
中,
,
,
,平面
平面
,四边形
是矩形,
,点
在线段
上.
(1)当
为何值时,
平面
?证明你的结论;
(2)求二面角
的平面角的余弦值.
同类题4
如图,在四棱锥
中,侧面
与底面
垂直,
为正三角形,
,
,点
分别为线段
的中点,
分别为线段
上一点,且
,
.
(1)当
时,求证:
平面
;
(2)试问:直线
上是否存在一点
,使得平面
与平面
所成锐二面角的大小为
,若存在,求
的长;若不存在,请说明理由.
同类题5
如图,正方体
的棱长为1,
为
的中点,
在侧面
上,有下列四个命题:
①若
,则
面积的最小值为
;
②平面
内存在与
平行的直线;
③过
作平面
,使得棱
,
,
在平面
的正投影的长度相等,则这样的平面
有4个;
④过
作面
与面
平行,则正方体
在面
的正投影面积为
.
则上述四个命题中,真命题的个数为( )
A.1
B.2
C.3
D.4
相关知识点
空间向量与立体几何
证明面面平行