刷题首页
题库
初中数学
题干
阅读下面的材料:勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为
a
,
b
,斜边为
c
,然后按图1的方法将它们摆成正方形.
由图1可以得到(
a
+
b
)
2
=4×
ab
+
c
2
整理,得
a
2
+2
ab
+
b
2
=2
ab
+
c
2
.
所以
a
2
+
b
2
=
c
2
.
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-13 08:10:31
答案(点此获取答案解析)
同类题1
如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A
1
AC
1
是由△ABC旋转得到的.
【小题1】请写出旋转中心的坐标是
,旋转角是
度;
【小题2】以(1)中的旋转中心为中心,分别画出△A
1
AC
1
顺时针旋转90°、180°的三角形;
【小题3】设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
同类题2
勾股定理是数学史上非常重要的一个定理.早在
多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以
的三边为边长,向外作正方形
、
、
.
(1)连接
、
,求证:
(2)过点
作
的垂线,交
于点
,交
于点
.
①试说明四边形
与正方形
的面积相等;
②请直接写出图中与正方形
的面积相等的四边形.
(3)由第(2)题可得:正方形
的面积
正方形
的面积
_______________的面积,即在
中,
__________________.
同类题3
我国古代伟大的数学家刘徽将直角三角形分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图,若
a
=4,
b
=6,则该直角三角形的周长为( )
A.18
B.20
C.24
D.26
同类题4
一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法:如图1,火柴盒的一个侧面ABCD(是一个长方形)倒下到AEFG的位置,连接CF,此时,∠FAC=90°,设AB=a,BC=b,AC=c.请利用直角梯形BCFG的面积证明勾股定理:a
2
+b
2
=c
2
.
同类题5
我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦.如图1所示,数学家刘徽(约公元225年—公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图2所示的长方形,是由两个完全相同的“勾股形”拼接而成,若
,
,则长方形的面积为______.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法