刷题首页
题库
高中数学
题干
在四棱柱
中,
平面
,底面
是边长为
的正方形,侧棱
的长为
,
为侧棱
上的动点(包括端点),则
A.对任意的
,
,存在点
,使得
B.当且仅当
时,存在点
,使得
C.当且仅当
时,存在点
,使得
D.当且仅当
时,存在点
,使得
上一题
下一题
0.99难度 单选题 更新时间:2015-06-26 06:41:00
答案(点此获取答案解析)
同类题1
在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
(1)证明DF⊥平面ABE;
(2)求二面角A-BD-E的余弦值.
同类题2
在如图所示的几何体中,
是
的中点,
.
(1)已知
,
.求证:
;
(2)已知
分别是
和
的中点.求证:
平面
.
同类题3
在如图所示的几何体中,四边形
是边长为3的菱形,
,
⊥平面
,
与平面
所成角为
.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的平面角的余弦值.
同类题4
如图,在直三棱柱
ABC
﹣
A
1
B
1
C
1
中,∠
ABC
=90°,
AB
=
AA
1
,
M
,
N
分别是
AC
,
B
1
C
1
的中点.求证:
(1)
MN
∥平面
ABB
1
A
1
;
(2)
AN
⊥
A
1
B
.
同类题5
给出下列命题:
①若直线
与平面
内的一条直线平行,则
;②若平面
平面
,且
,则过
内一点
与
垂直的直线垂直于平面
;③
,
;④已知
,则“
”是“
”的必要不充分条件.其中正确命题有( )
A.②④
B.①②
C.④
D.②③
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
异面直线所成的角
证明异面直线垂直