刷题首页
题库
高中数学
题干
已知:如图,等腰直角三角形
的直角边
,沿其中位线
将平面
折起,使平面
⊥平面
,得到四棱锥
,设
、
、
、
的中点分别为
、
、
、
.
(1)求证:
、
、
、
四点共面;
(2)求证:平面
平面
;
(3)求异面直线
与
所成的角.
上一题
下一题
0.99难度 解答题 更新时间:2014-02-19 06:57:50
答案(点此获取答案解析)
同类题1
如图,已知四棱锥
,底面
为菱形,
平面
,
,
分别是
的中点.
(Ⅰ)证明:
;
(Ⅱ)若
为
上的动点,
与平面
所成最大角的正切值为
,求二面角
的余弦值.
同类题2
已知五边形
是由直角梯形
和等腰直角三角形
构成,如图所示,
,
,
,且
,将五边形
沿着
折起,且使平面
平面
.
(Ⅰ)若
为
中点,边
上是否存在一点
,使得
平面
?若存在,求
的值;若不存在,说明理由;
(Ⅱ)求四面体
的体积.
同类题3
如图,正方形
和四边形
所在的平面互相垂直.
,
,
.
(
)求证:
平面
.
(
)求证:
平面
.
(
)在直线
上是否存在点
,使得
平面
?并说明理由.
同类题4
如图,在菱形
中,
与
相交于点
,
平面
,
.
(I)求证:
平面
;
(II)当直线
与平面
所成的角为
时,求二面角
的余弦角.
同类题5
如图,
中,
,
,
,
,
,
.
(1)若
与平面
成
角,求此时
与平面
所成的角的正弦值;
(2)求
长的最小值.
相关知识点
空间向量与立体几何
平行公理
异面直线所成的角
证明异面直线垂直