刷题首页
题库
高中数学
题干
如图,在四棱锥
中,底面ABCD是菱形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点。
(Ⅰ)求证:CD∥平面PAB;
(Ⅱ)求证:PE⊥AD;
(Ⅲ)若CA=CB,求证:平面PEC⊥平面PAB。
上一题
下一题
0.99难度 解答题 更新时间:2016-05-31 05:44:39
答案(点此获取答案解析)
同类题1
已知平行四边形
,
,
,
,
为
的中点,把三角形
沿
折起至
位置,使得
,
是线段
的中点.
(1)求证:
面
;
(2)求证:面
面
;
(3)求四棱锥
的体积.
同类题2
给出下列命题
①过平面外一点有且仅有一个平面与已知平面垂直
②过直线外一点有且仅有一个平面与已知直线平行
③过直线外一点有且仅有一条直线与已知直线垂直
④过平面外一点有且仅有一条直线与已知平面垂直
其中正确命题的个数为( )
A.0个
B.1个
C.2个
D.3个
同类题3
如图,在侧棱垂直于底面ABC的三棱柱ABC-A
1
B
1
C
1
中,A
1
B
1
=A
1
C
1
,D,E分别是棱BC,CC
1
上的点(点D不同于点C),且AD⊥DE,F是B
1
C
1
的中点.
求证:(1)平面ADE⊥平面BCC
1
B
1
;
(2)直线A
1
F∥平面ADE.
同类题4
(本小题满分12分)
如图,四棱锥
中,
⊥平面
,
∥
,
,
分别为线段
的中点.
(1)求证:
∥平面
;
(2)求证:
⊥平面
.
同类题5
如图,
已知四边形
和
均为直角梯形,
∥
,
∥
,且
,平面
⊥平面
,
(Ⅰ)证明:
平面
;
(Ⅱ)求平面
和平面
所成锐二面角的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
平行公理
证明异面直线垂直