刷题首页
题库
高中数学
题干
如图,四边形
中,
,
,
,
,
分别在
上,
,现将四边形
沿
折起,使
.
(1)若
,在折叠后的线段
上是否存在一点
,使得
平面
?若存在,求出
的值;若不存在,说明理由;
(2)求三棱锥
的体积的最大值,并求出此时点
到平面
的距离.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-01 01:10:37
答案(点此获取答案解析)
同类题1
如图,四边形
ABCD
为矩形,
DA
⊥平面
ABE
,
AE
=
EB
=
BC
=2,
BF
⊥平面
ACE
,且点
F
在
CE
上.
(1)求证:
AE
⊥
BE
;
(2)求三棱锥
D
—
AEC
的体积;
(3)设点
M
在线段
AB
上,且满足
AM
=2
MB
,试在线段
CE
上确定一点
N
,
使得
MN
∥平面
DAE
.
同类题2
如图(1)是一个水平放置的正三棱柱
,
是棱
的中点,正三棱柱的主视图如图(2).
(1)图(1)中垂直于平面
的平面有哪几个(直接写出符合要求的平面即可,不必说明或证明)
(2)求正三棱柱
的体积;
(3)证明:
平面
.
同类题3
如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面
平面
.现有以下四个结论:
①AD∥平面SBC;
②
;
③若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积;
④
与平面SCD所成的角为45°.
其中正确结论的序号是
__________
.
同类题4
如图,在四棱锥
中,平面
平面
;
,
,
,
.
(1)证明:
平面
;
(2)求直线
与平面
所成的角的正切值.
同类题5
在四棱锥
中,
,
,
和
都是边长为2的等边三角形,设
在底面
的射影为
.
(1)求证:
是
中点;
(2)证明:
;
(3)求点
到面
的距离.
相关知识点
空间向量与立体几何
锥体体积的有关计算
证明线面平行
线面平行的性质