刷题首页
题库
初中数学
题干
如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)①求证图1中△ADC≌△CEB;②证明DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由)。
上一题
下一题
0.99难度 解答题 更新时间:2019-12-06 11:58:41
答案(点此获取答案解析)
同类题1
如图,在Rt△
ABC
中,
AB
=
AC
,
D
、
E
是斜边
BC
上的两点,且∠
DAE
=45°.设
BE
=
a
,
DC
=
b
,那么
AB
=_____(用含
a
、
b
的式子表示
AB
).
同类题2
如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°,AC、BD交于点M.(1) 如图1,求证:AC=BD,判断AC与BD的位置关系并说明理由;
(2) 如图2,∠AOB=∠COD=60°时,∠AMD的度数为___________.
同类题3
已知
是一张直角三角形纸片,其中
,
,小亮将它绕点
逆时针旋转后
得到
,
交直线
于点
.
(1)如图1,当
时,
所在直线与线段
有怎样的位置关系?请说明理由.
(2)如图2,当
,求
为等腰三角形时的度数.
同类题4
如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点,(不与点B、C)重合,将线段AD绕点A逆时针旋转60°得到AE,连接EC,则∠ACE的度数是__________,线段AC,CD,CE之间的数量关系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.
同类题5
如图,在四边形
中,
、
是对角线,已知
是等边三角形,
,
,
,求边
的长.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型