刷题首页
题库
高中数学
题干
如图,梯形
满足
,且
,现将梯形
绕
所在的直线旋转一周,所得几何体记作
,求
的体积
V.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-19 07:10:34
答案(点此获取答案解析)
同类题1
“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高(不超过三次)的多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即:
,式中
,
,
,
依次为几何体的高,下底面积,上底面积,中截面面积.如图,现将曲线
与直线
及
轴围成的封闭图形绕
轴旋转一周得到一个几何体.利用辛卜生公式可求得该几何体的体积
( )
A.
B.
C.
D.
同类题2
如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEF
A.
(2)若
,求几何体ABCDEF的体积.
同类题3
如图,几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面积和体积.
同类题4
古希腊亚历山大时期的数学家怕普斯(Pappus, 约300~约350)在《数学汇编》第3卷中记载着一个定理:“如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以重心旋转所得周长的积”如图,半圆
的直径
,点
是该半圆弧的中点,那么运用帕普斯的上述定理可以求得,半圆弧与直径所围成的半圆面(阴影部分个含边界)的重心
位于对称轴
上,且满足
= ( )
A.
B.
C.
D.
同类题5
如图,
是圆柱体
的一条母线,
过底面圆的圆心
,
是圆
上不与
、
重合的任意一点,已知棱
,
,
.
(1)求异面直线
与平面
所成角的大小;
(2)将四面体
绕母线
旋转一周,求
三边旋转过程中所围成的几何体的体积.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
组合体的表面积和体积
求旋转体的体积