刷题首页
题库
高中数学
题干
在如图所示的几何体中,
,
平面
,
,
,
,
.
(1)证明:
平面
;
(2)求平面
与平面
所成二面角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-20 10:19:11
答案(点此获取答案解析)
同类题1
现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
同类题2
如图,矩形
,
为
的中点,将
沿直线
翻折成
,连接
,
为
的中点,则在翻折过程中,下列说法中所有正确的是( )
A.存在某个位置,使得
B.翻折过程中,
的长是定值;
C.若
,则
;
D.若
,当三棱锥
的体积最大时,三棱锥
的外接球的表面积是
.
同类题3
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE =
,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBC
A.
(1)若以F、B、C、D为顶点的三棱锥的体积记为
,求
的最大值;
(2)当
取得最大值时,求二面角D-BF-C的余弦值.
同类题4
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为正方形,PD=DC=2,E,F,G分别是AB,PB,CD的中点.
(1)求证:EF⊥DC;
(2)求证:GF∥平面PAD;
(3)求点G到平面PAB的距离.
同类题5
如图,直线
⊥平面
,垂足是
O
,已知长方体
中,
,该长方体符合以下条件的自由运用:(1)
,(2)
,则
两点之间的最大距离为
相关知识点
空间向量与立体几何