刷题首页
题库
高中数学
题干
如图,直三棱柱
ABC
﹣
A
1
B
1
C
1
中,
AC
=
BC
=
AA
1
=3,
AC
⊥
BC
,点
M
在线段
AB
上.
(1)若
M
是
AB
中点,证明
AC
1
∥平面
B
1
CM
;
(2)当
BM
时,求直线
C
1
A
1
与平面
B
1
MC
所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-10 10:26:46
答案(点此获取答案解析)
同类题1
如图①,在矩形
中,
,
是
的中点,将三角形
沿
翻折到图②的位置,使得平面
平面
.
(Ⅰ)在线段
上确定点
,使得
平面
,并证明;
(Ⅱ)求
与
所在平面构成的锐二面角的正切值.
同类题2
如图,在四棱锥
中,底面
是平行四边形,
平面
,
,
,
,
为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)若
,求二面角
的大小.
同类题3
如图所示,四棱锥
P
﹣
ABCD
的底面是边长为2的正方形,平面
PAD
⊥平面
ABCD
,
PA
⊥
AD
,∠
PDA
=45°,
E
,
F
分别为
AB
,
PC
的中点.
(1)证明:
EF
∥平面
PAD
;
(2)在线段
BC
上是否存在一点
H
,使平面
PAH
⊥平面
DEF
?若存在,求此时二面角
C
﹣
HD
﹣
P
的平面角的正切值:若不存在,说明理由.
同类题4
如图所示,在四棱锥
中,底面
是
且边长为
的菱形,侧面
为正三角形,其所在平面垂直于底面
,若
为
的中点,
为
的中点.
(1)求证:
平面
;
(2)求证:
;
(3)在棱
上是否存在一点
,使平面
平面
,若存在,确定点
的位置;若不存在,说明理由
同类题5
如图,四棱锥P−ABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行