刷题首页
题库
高中数学
题干
如图,四棱锥P−ABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-17 02:49:24
答案(点此获取答案解析)
同类题1
如图,三棱柱
的各棱长均为2,
面
,
E
,
F
分别为棱
的中点.
(Ⅰ)求证:直线
BE
∥平面
;
(Ⅱ)平面
与直线
AB
交于点
M
,指出点
M
的位置,说明理由,并求三棱锥
的体积.
同类题2
如图,在四棱锥
中,
,
,
,
,
,
为
的中点.
(1)证明:
平面
;
(2)求三棱锥
与四棱锥
的体积比.
同类题3
如图,在多面体
中,底面
为菱形,
底面
,
.
(1)证明:
平面
;
(2)若
,
,当
长为多少时,平面
平面
.
同类题4
如图,在四棱锥
,
,底面
是直角梯形,
,
,
是
的中点,
是
上一点,且
.
(1)证明:
;
(2)若
,
,求三棱锥
的体积.
同类题5
由四棱柱
截去三棱锥
,后得到的几何体如图所示.四边形
为正方形,
为
与
的交点,
E
为
的中点,
平面
.
(1)证明:
平面
;
(2)设
M
是
的中点,证明:平面
平面
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行