刷题首页
题库
高中数学
题干
在四棱锥
中,平面
平面
,
为等边三角形,
,
,
,点
是
的中点.
(1)求证:
平面
;
(2)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 02:06:22
答案(点此获取答案解析)
同类题1
已知
菱形
所在平面,
,
为线段
的中点,
为线段
上一点,且
.
(1)求证:
平面
;
(2)若
,求二面角
的余弦值.
同类题2
如图,在四棱锥
中,底面
是边长为2的正方形,侧面
是等腰直角三角形,且
,侧面
⊥底面
.
(1)若
分别为棱
的中点,求证:
∥平面
;
(2)棱
上是否存在一点
,使二面角
成
角,若存在,求出
的长;若不存在,请说明理由.
同类题3
已知三棱柱ABC-A
1
B
1
C
1
中,侧棱垂直于底面,AC=BC,点D是AB的中点.
(1)求证:BC
1
∥平面CA
1
D;
(2)求证:平面CA
1
D⊥平面AA
1
B
1
B;
(3)若底面ABC为边长为2的正三角形,BB
1
=
求三棱锥B
1
-A
1
DC的体积.
同类题4
如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
为棱
上的点,
,
.
(1)若
为棱
的中点,求证:
//平面
;
(2)当
时,求平面
与平面
所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点
是线段
上的动点,
与平面
所成的角为
,求当
取最大值时点
的位置.
同类题5
如图,在四棱锥
中,侧面
底面
,
,
,
,满足
,
,底面是直角梯形,
.
(1)求证:
平面
;
(2)求三棱锥
的体积;
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行