刷题首页
题库
初中数学
题干
如图,在等腰Rt△
ABC
中,∠
C
=90°,
AC
=8,
F
是
AB
边上的中点,点
D
、
E
分别在
AC
、
BC
边上运动,且保持
AD
=
CE
.连接
DE
、
DF
、
EF
.在此运动变化的过程中,下列结论:①△
DFE
是等腰直角三角形;②
DE
长度的最小值为4;③四边形
CDFE
的面积保持不变;④△
CDE
面积的最大值为8.其中正确的结论是( )
A.①②③
B.①③
C.①③④
D.②③④
上一题
下一题
0.99难度 单选题 更新时间:2020-01-14 12:19:42
答案(点此获取答案解析)
同类题1
已知,如图,
中,
,
,
为形内一点,若
,
,则
的度数为__________.
同类题2
已知Rt△ABC中,∠ACB=90°,∠B=60°,BC=4,D为AB边上一点,且BD=3,将△BCD绕着点C顺时针旋转60°到△B′CD′,则AD′的长为_____.
同类题3
如图,已知△ABC中,AB=AC,∠BAC=90°,直角三角形EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤
,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合)上述结论正确的是_____________.(填序号)
同类题4
(1)在△
ABC
中,∠
ACB
=90°,
AC
=
BC
,直线
MN
经过点
C
,
AD
⊥
MN
于点
D
,
BE
⊥
MN
于点
E
,当直线
MN
旋转到图1的位置时,求证:
DE
=
AD
+
BE
;
(2)在(1)的条件下,当直线
MN
旋转到图2的位置时,猜想线段
AD
,
DE
,
BE
的数量关系,并证明你的猜想;
(3)如图3,在△
ABC
中,
AD
⊥
BC
于
D
,
AD
=
BC
,
BF
⊥
BC
于
B
,
BF
=
CD
,
CE
⊥
BC
于
C
,
CE
=
BD
,求证:∠
EAF
+∠
BAC
=90°.
同类题5
已知,△
ABC
中,∠
ACB
=90°,
AC
=
BC
,点
E
是
BC
上一点,连接
AE
(1)如图1,当
AE
平分∠
BAC
时,
EH
⊥
AB
于
H
,△
EHB
的周长为10
m
,求
AB
的长;
(2)如图2,延长
BC
至
D
,使
DC
=
BC
,将线段
AE
绕点
A
顺时针旋转90°得线段
AF
,连接
DF
,过点
B
作
BG
⊥
BC
,交
FC
的延长线于点
G
,求证:
BG
=
BE
.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型