刷题首页
题库
初中数学
题干
如图,画∠
AOB
=90°,并画∠
AOB
的平分线
OC
.
(1)将三角尺的直角顶点落在
OC
的任意一点
P
上,使三角尺的两条直角边与∠
AOB
的两边分别垂直,垂足为
E
、
F
(如图1).则
PE
_____
PF
(填“>”、“<”、“=”)
(2)把三角尺绕着点
P
旋转(如图2),
PE
与
PF
相等吗?试猜想
PE
、
PF
的大小关系,并说明理由.
(3)在(2)的条件下,过点
P
作直线
GH
⊥
OC
,分别交
OA
、
OB
于点
G
、
H
,如图3 .
①图中全等三角形有___________对(不添加辅助线)
②猜想
GE
2
、
FH
2
、
EF
2
之间的关系,并证明你的猜想.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-21 07:39:33
答案(点此获取答案解析)
同类题1
问题提出
(1)如图①,已知
中,
,将
绕点O逆时针旋转90°得到
,连接
.则
______;
问题探究
(2)如图②,已知
是边长为
的等边三角形,以
为边向外作等边
,P为
内一点,将线段
绕点C逆时针旋转60°,点P的对应点为点Q,连接
,求
的最小值;
问题解决
(3)如图③,矩形场地
为一个货运场,其中
米,
米,顶点A、D为两个出口,现想在货运广场内建一个货物堆放平台P,在
边上(含B,C两点)开一个货物入口M,并修建三条专用车道
、
、
.若修建专用车道的费用为10000元/米(车道宽度不计),当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)
同类题2
建立模型:
如图1,等腰Rt△
ABC
中,∠
ABC
=90°,
CB
=
BA
,直线
ED
经过点
B
,过
A
作
AD
⊥
ED
于
D
,过
C
作
CE
⊥
ED
于
E
.则易证△
ADB
≌△
BE
A.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段
AB
和直角∠
ABC
转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.
模型应用:
(1)如图2,点
A
(0,4),点
B
(3,0),△
ABC
是等腰直角三角形.
①若∠
ABC
=90°,且点
C
在第一象限,求点
C
的坐标;
②若
AB
为直角边,求点
C
的坐标;
(2)如图3,长方形
MFNO
,
O
为坐标原点,
F
的坐标为(8,6),
M
、
N
分别在坐标轴上,
P
是线段
NF
上动点,设
PN
=
n
,已知点
G
在第一象限,且是直线
y
=2
x
一6上的一点,若△
MPG
是以
G
为直角顶点的等腰直角三角形,请直接写出点
G
的坐标.
同类题3
如图1,在△
ABC
中,点
D
、点
E
分别在边
AB
、
BC
上,
DE=AE
,且
∠B=∠C=∠DEA=β
。
(1)求证:△
BDE
≌△
CEA
(2)当∠
DEB
=
β
时,
①求
β
的值;
②若将△
AEC
绕点
E
顺时针旋转,使得∠
DEA
=90°,如图2所示,其余条件不变,连结
AB
交
CE
的延长线于
F
,求证:
CF=C
A.
同类题4
如图,在Rt△
ABC
中,∠
A
=90°,
AB
=3,
AC
=4,
D
为
AC
中点,
P
为
AB
上的动点,将
P
绕点
D
逆时针旋转90°得到P′,连
CP′
的最小值为( )
A.1.6
B.2.4
C.2
D.2
同类题5
拓展与探索:如图,在正△ABC中,点E在AC上,点D在BC的延长线上.
(1)如图1,AE=EC=CD,求证:BE=ED;
(2)如图2,若E为AC上异于A、C的任一点,AE=CD,(1)中结论是否仍然成立?为什么?
(3)若E为AC延长线上一点,且AE=CD,试探索BE与ED间的数量关系,并证明你的结论.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型