刷题首页
题库
高中数学
题干
数列
的前
项和记为
点
在直线
上,
.
(Ⅰ)当实数
为何值时,数列
是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设
,
是数列
的前
项和,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2011-03-16 03:31:13
答案(点此获取答案解析)
同类题1
在数列的每相邻两项之间插入此两项的和,形成新的数列,这样的操作叫做该数列的一次拓展.如数列1,2,经过第1次拓展得到数列1,3,2;经过第2次拓展得到数列1,4,3,5,2;设数列
a
,
b
,
c
经过第
n
次拓展后所得数列的项数记为
,所有项的和记为
.
(1)求
,
,
;
(2)若
,求
n
的最小值;
(3)是否存在实数
a
,
b
,
c
,使得数列
为等比数列,若存在,求
a
,
b
,
c
满足的条件;若不存在,请说明理由.
同类题2
已知数列
的前
项和
,数列
满足
,且
.
(Ⅰ)求数列
和
的通项公式;
(Ⅱ)若
,求数列
的前
项和
.
同类题3
已知数列
的前
项和为
,且满足
.
(1)证明:数列
为等比数列;
(2)求数列
的通项公式;
(3)若
,数列
的前
项和为
,求满足不等式
时
的最小值.
同类题4
已知数列
中,
,
(
为正常数),数列
满足
.
(1)若
是等差数列,且
,求数列
的通项公式;
(2)若
是等比数列,求数列
的前
项和
.
同类题5
已知
为等比数列
的前
项和,公比
,且
,等差数列
满足
,
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
是数列
的前
项和,求
的最大值.
相关知识点
数列
等比数列
等比数列的通项公式
由定义判定等比数列
裂项相消法求和