刷题首页
题库
高中数学
题干
已知数列{
a
n
}的前
n
项和为
S
n
,且
a
1
=1,
a
n
+
1
=
S
n
(
n
=1,2,3,…).
(1)求数列{
a
n
}的通项公式;
(2)当
b
n
=
(3
a
n
+
1
)时,求证:数列
的前
n
项和
T
n
=
.
上一题
下一题
0.99难度 解答题 更新时间:2018-08-25 04:48:37
答案(点此获取答案解析)
同类题1
设数列
,其前
项和
,又
单调递增的等比数列,
,
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)若
,求数列
的前n项和
,并求证:
.
同类题2
已知数列
满足
,且
,
,
成等差数列,设
.
(
)求数列
,
的通项公式.
(
)求数列
的前
项和
.
同类题3
在正项等比数列{
}中,
且
成等差数列.
(1)求数列的通项公式;
(2)若数列{
}满足
,求数列{
}的前
项和
.
同类题4
在等比数列
中,公比
,且满足
,
.
(1)求数列
的通项公式;
(2)设
,数列
的前
项和为
,当
取最大值时,求
的值.
同类题5
河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列
,则
的值为( )
A.8
B.10
C.12
D.16
相关知识点
数列
等比数列
等比数列的通项公式
写出等比数列的通项公式
由递推关系证明等比数列
裂项相消法求和