刷题宝
  • 刷题首页
题库 高中数学

题干

已知数列{an}的前n项和Sn=1+λan,其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)当λ=2时,求数列{}的前n项和.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-10 10:48:43

答案(点此获取答案解析)

同类题1

已知数列满足,,令.
(Ⅰ)求证:是等比数列;
(Ⅱ)记数列的前n项和为,求;
(Ⅲ)求证:.

同类题2

已知数列的前项和为,且,N*
(1)求数列的通项公式;
(2)已知(N*),记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由.
(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列;

同类题3

在等差数列中,其前项和为.
(1)求的最小值,并求出的最小值时的值;
(2)求.

同类题4

已知数列的前项和,满足,.
(1)求证:数列为等比数列;
(2)若,求数列的前项和.

同类题5

已知数列满足:,(),数列满足:,(),数列的前项和为.
(1)求数列的通项公式;
(2)求证:数列是等比数列;
(3)求证:数列是递增数列;若当且仅当时,取得最小值,求的取值范围.
相关知识点
  • 数列
  • 等比数列
  • 等比数列的通项公式
  • 由递推关系证明等比数列
  • 裂项相消法求和
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)