刷题宝
  • 刷题首页
题库 高中数学

题干

已知数列{an}的前n项和Sn=1+λan,其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)当λ=2时,求数列{}的前n项和.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-10 10:48:43

答案(点此获取答案解析)

同类题1

在数列中,,,设.
(1)证明:数列是等比数列;
(2)求的前项和.

同类题2

已知数列的前项和为,已知,,.
(1)设,求证:数列是等比数列,并写出数列的通项公式;
(2)若对任意都成立,求实数的取值范围.

同类题3

已知数列满足,点在直线上.数列满足,(且).
(1)求的通项公式;
(2)(i)求证:(且);
(ii)求证:.

同类题4

设各项均为正数的数列的前项和为,且对任意恒有成立;数列满足:,且.
(1)求、的值及数列的通项公式;
(2)①记,证明数列为等比数列;
②若数列的前项和为,求的值.

同类题5

下面有四个命题:
①在等比数列中,首项是等比数列为递增数列的必要条件.
②已知,则.
③将的图象向右平移个单位,再将所得图象的横坐标不变,纵坐标缩短到原来的,可得到的图象.
④设,则函数有最小值无最大值.
其中正确命题的序号为___________.(填入所有正确的命题序号)
相关知识点
  • 数列
  • 等比数列
  • 等比数列的通项公式
  • 由递推关系证明等比数列
  • 裂项相消法求和
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)