刷题首页
题库
高中数学
题干
(本小题满分12分)
已知函数f(x)=
-bx+lnx(a,b∈R).
(Ⅰ)若a=b=1,求f(x)点(1,f(1))处的切线方程;
(Ⅱ)设a<0,求f(x)的单调区间;
(Ⅲ)设a<0,且对任意的x>0,f(x)≤f(2),试比较ln(-a)与-2b的大小.
上一题
下一题
0.99难度 解答题 更新时间:2015-04-22 06:30:16
答案(点此获取答案解析)
同类题1
已知函数
有极小值
.
(1)求实数
的值;
(2)设函数
.证明:当
时,
.
同类题2
已知函数
.
(1)求函数
图象经过的定点坐标;
(2)当
时,求曲线
在点
处的切线方程及函数
单调区间;
(3)若对任意
,
恒成立,求实数
的取值范围.
同类题3
已知
为
上的可导函数,且有
,则对于任意的
,当
时,有( )
A.
B.
C.
D.
同类题4
已知函数
为自然对数的底数.
(1)求曲线
在
处的切线方程;
(2)关于
的不等式
在
上恒成立,求实数
的值;
(3)关于
的方程
有两个实根
,求证:
.
同类题5
(2011•洛阳二模)已知函数f(x)=(ax
2
﹣2x+a)e
﹣x
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设
,若x>l时总有g(x)<h(x),求实数c范围.
相关知识点
函数与导数
导数及其应用
导数的综合应用
导数在函数中的其他应用