刷题首页
题库
高中数学
题干
工厂需要围建一个面积为512
的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁.我们知道,砌起的新墙的总长度
(单位:
)是利用原有墙壁长度
(单位:
)的函数.
(1)写出
关于
的函数解析式,确定
的取值范围.
(2)堆料场的长、宽之比为多少时,需要砌起的新墙用的材料最省?
上一题
下一题
0.99难度 解答题 更新时间:2018-03-08 01:32:20
答案(点此获取答案解析)
同类题1
某箱子的容积与底面边长
x
的关系为
,则当箱子的容积最大时,箱子的底面边长为
A.30
B.35
C.40
D.50
同类题2
如图,在圆心角为
,半径为
的扇形铁皮上截取一块矩形材料
,其中点
为圆心,点
在圆弧上,点
在两半径上,现将此矩形铁皮
卷成一个以
为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长
,圆柱形铁皮罐的容积为
.
(1)求圆柱形铁皮罐的容积
关于
的函数解析式,并指出该函数的定义域;
(2)当
为何值时,才使做出的圆柱形铁皮罐的容积
最大?最大容积是多少? (圆柱体积公式:
,
为圆柱的底面枳,
为圆柱的高)
同类题3
如图是一块镀锌铁皮的边角料
,其中
都是线段,曲线段
是抛物线的一部分,且点
是该抛物线的顶点,
所在直线是该抛物线的对称轴. 经测量,
2米,
米,
,点
到
的距离
的长均为1米.现要用这块边角料裁一个矩形
(其中点
在曲线段
或线段
上,点
在线段
上,点
在线段
上). 设
的长为
米,矩形
的面积为
平方米.
(1)将
表示为
的函数;
(2)当
为多少米时,
取得最大值,最大值是多少?
同类题4
已知球
的直径长为12,当它的内接正四棱锥的体积最大时,该四棱锥的高为( )
A.4
B.6
C.8
D.12
同类题5
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知
,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题