刷题首页
题库
高中数学
题干
如图,准备在墙上钉一个支架,支架由两直杆AC与BD 焊接而成,焊接点 D 把杆AC 分成 AD, CD 两段,其中两固定点A,B 间距离为1 米,AB 与杆 AC 的夹角为60° ,杆AC 长为 1 米,若制作 AD 段的成本为
a
元/米,制作 CD 段的成本是 2
a
元/米,制作杆BD 成本是 3
a
元/米. 设 ÐADB = a ,则制作整个支架的总成本记为 S 元.
(1)求S关于a 的函数表达式,并求出a的取值范围;
(2)问
段多长时,S最小?
上一题
下一题
0.99难度 解答题 更新时间:2018-04-24 08:56:53
答案(点此获取答案解析)
同类题1
一件要在展览馆展出的文物近似于圆柱形,底面直径为0.8米,高为1.2米,体积约为0.6立方米.为保护文物,需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不小于1.2米,高是底面边长的2倍.保护罩内充满保护文物的无色气体,气体每立方米500元.为防止文物发生意外,展览馆向保险公司进行了投保,保险费用与保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元.
(1)若保护罩的底面边长为2.5米,求气体费用与保险费用的和;
(2)为使气体费用与保险费用的和最低,保护罩应如何设计?
同类题2
如图,已知曲线
C
1
:
y
=
x
3
(
x
≥0)与曲线
C
2
:
y
=-2
x
3
+3
x
(
x
≥0)交于点
O
,
A
,直线
x
=
t
(0<
t
<1)与曲线
C
1
、C
2
交于点
B
,
D
.
(1)写出四边形
ABOD
的面积
S
与
t
的函数关系
S
=
f
(
t
);
(2)讨论
f
(
t
)的单调性,并求
f
(
t
)的最大值.
同类题3
为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O及等腰直角三角形EFH,其中
.为裁剪出面积尽可能大的梯形铁片ABCD(不计损耗),将点A,B放在弧EF上,点C、D放在斜边
上,且
,设
.
(1)求梯形铁片ABCD的面积
关于
的函数关系式;
(2)试确定
的值,使得梯形铁片ABCD的面积
最大,并求出最大值.
同类题4
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=
.
(1)记市民活动广场及停车场的占地总面积为
,求
的表达式;
(2)当cos
为何值时,可使市民活动广场及停车场的占地总面积最大.
同类题5
设四棱锥的底面是一个正方形,5 个顶点都在一个半径为1的球面上,则四棱锥的体积的最大值为__________.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题