刷题首页
题库
高中数学
题干
已知函数
(1)若函数
是
上的增函数,求
的取值范围;
(2)证明:当
时,不等式
对任意
恒成立;
(3)证明:
上一题
下一题
0.99难度 解答题 更新时间:2011-06-03 05:59:16
答案(点此获取答案解析)
同类题1
已知函数
(1)若函数
在定义域上为增函数,求
a
的取值范围;
(2)证明:
同类题2
函数
y
=cos
x
在区间-π,
a
上为增函数,则
a
的取值范围是________
同类题3
已知函数
(其中
是自然对数的底数).
(1)证明:①当
时,
;
②当
时,
.
(2)是否存在最大的整数
,使得函数
在其定义域上是增函数?若存在,求
的值;若不存在,请说明理由.
同类题4
已知函数
(1)试确定
的取值范围,使得函数
在
上为单调函数;
(2)当
时,判断
和
的大小,并说明理由;
(3)求证:当
时,关于
的方程
在区间
上,总有两个不同的解.
同类题5
已知函数
在
上单调递增,则
的取值范围是__________.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的单调性
由函数的单调区间求参数
利用导数证明不等式