刷题首页
题库
高中数学
题干
设函数
,其中
.函数
的图像在点
处的切线与函数
的图像在点
处的切线互相垂直.
(Ⅰ)求
的值;
(Ⅱ)若
在
上恒成立,求实数
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-04 07:08:15
答案(点此获取答案解析)
同类题1
设函数
.
(I)若a>0且a≠2,直线l与函数f(x)和函数g(x)的图象相切于一点,求切线l的方程.
(II)若f(x)在2,4内为单调函数,求实数a的取值范围.
同类题2
已知
a
为常数,若曲线
y
=
ax
2
+3
x
−ln
x
存在与直线
x
+
y
−1=0垂直的切线,则实数
a
的取值范围是
A.
B.
C.−1,+∞)
D.(−∞,−1
同类题3
(题文)已知
为非零实数,函数
(Ⅰ)求函数
的单调区间
(Ⅱ)若直线
与
和
的图像都相切,则称直线
是
和
的公切线,已知函数
和
有两条公切线
(1)求
的取值范围
(2)若
分别为直线
与
图像的两个切点的横坐标,求证:
同类题4
已知
、
是函数
(其中常数
)图象上的两个动点,点
,若
的最小值为0,则函数
的最大值为( )
A.
B.
C.
D.
同类题5
已知函数
,
.
(Ⅰ)若直线
与曲线
和
分别交于
两点.设曲线
在点
处的切线为
,
在点
处的切线为
.
(ⅰ)当
时,若
,求
的值;
(ⅱ)若
,求
的最大值;
(Ⅱ)设函数
在其定义域内恰有两个不同的极值点
,
,且
.
若
,且
恒成立,求
的取值范围.
相关知识点
函数与导数
导数及其应用
导数的概念和几何意义
导数的几何意义
两条切线平行、垂直、重合(公切线)问题
利用导数研究不等式恒成立问题