刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数.
(1)求函数的单调区间;
(2)若直线为曲线的切线,求证:直线与曲线不可能有2个切点.
上一题 下一题 0.99难度 解答题 更新时间:2019-10-26 08:11:29

答案(点此获取答案解析)

同类题1

设,.已知函数,.
(Ⅰ)求的单调区间;
(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,
(i)求证:在处的导数等于0;
(ii)若关于x的不等式在区间上恒成立,求b的取值范围.

同类题2

已知两曲线,相交于点P,若两曲线在点P处的切线互相垂直,则实数的值是______.

同类题3

若函数在处取得极大值或极小值,则称为函数的极值点.设函数.
(1)若函数在上无极值点,求的取值范围;
(2)求证:对任意实数,在函数的图象上总存在两条切线相互平行;
(3)当时,若函数的图象上存在的两条平行切线之间的距离为4,问;这样的平行切线共有几组?请说明理由.

同类题4

直线为曲线,的一条切线,若直线与抛物线相切于点,且,,则的值为________.

同类题5

已知函数.
(I)当时,若函数在上单调递减,求实数的取值范围;
(II)若,且过原点存在两条互相垂直的直线与曲线均相切,求和的值.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数的概念和几何意义
  • 导数的几何意义
  • 两条切线平行、垂直、重合(公切线)问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)