刷题首页
题库
高中数学
题干
某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为
,其中
为产品售出的数量(单位:百件).
(1)把年利润表示为年产量
x
(百件)(
x
≥0)的函数
f
(
x
);
(2)当年产量为多少件时,公司可获得最大年利润?
上一题
下一题
0.99难度 解答题 更新时间:2011-10-18 03:38:33
答案(点此获取答案解析)
同类题1
某商场销售一种水果的经验表明,该水果每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数.已知销售价格为6元/千克时,每日可售出该水果52千克.
(1)求
的值;
(2)若该水果的成本为5元/千克,试确定销售价格
的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.
同类题2
某企业为了保护环境,发展低碳经济,在国家科研部门的支持下,进行技术攻关,新上了一个把二氧化碳处理转化为一种化工产品的项目,经测算,该项目月处理成本
(单位:元)与月处理量
(单位:吨)之间的函数关系可近似地表示为
,且每处理一吨二氧化碳所得的这种化工产品可获利
元,如果该项目不获利,那么亏损数额将由国家给予补偿.
(
)求
时,该项目的月处理成本.
(
)当
时,判断该项目能否获利?如果亏损,那么国家每月补偿数额(单位:元)的范围是多少?
同类题3
十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2019年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产
x
(百辆),需另投入成本
万元,且
.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.
(1)求出2019年的利润
(万元)关于年产量
x
(百辆)的函数关系式;(利润=销售额-成本)
(2)2019年产量为多少百辆时,企业所获利润最大?并求出最大利润.
同类题4
如图,有一块矩形空地
,要在这块空地上开辟一个内接四边形
为绿地,使其四个顶点分別落在矩形
的四条边上.已知
,
,且
,设
,绿地
的面积为
.
(1)写出
关于
的函数解析式,并求出它的定义域.
(2)当
为何值时,绿地面积最大?并求出最大值.
同类题5
如图,
为等腰直角三角形,直线
与
相交且
,若直线
截这个三角形所得的位于直线右侧的图形面积为
,点
到直线
的距离为
,在
的图像大致为( )
A.
B.
C.
D.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
分段函数模型的应用