刷题首页
题库
高中数学
题干
某工厂某种产品的年固定成本为250万元,每生产
万
件
,需另投入成本为
,当年产量不足80
万
件
时,
(万元).当年产量不小于80
万
件
时,
(万元).
每件
商品售价为50元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润
(万元)关于年产量
(
万
件
)的函数解析式;
(2)年产量为多少
万
件
时,该厂在这一商品的生产中所获利润最大?
上一题
下一题
0.99难度 解答题 更新时间:2019-12-02 05:38:28
答案(点此获取答案解析)
同类题1
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y
1
与投资金额x的函数关系为y
1
=18-
,B产品的利润y
2
与投资金额x的函数关系为y
2
=
(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
同类题2
某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本
(万元)与年产量
(吨)之间的函数关系式近似地表示为
.问:(1)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润;
(2)年产量为多少吨时,每吨的平均成本最低?并求出最低成本.
同类题3
某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元,已知该厂在制造电子元件过程中,次品率p与日产量x的函数关系是:
,为获得最大盈利,该厂的日产量应定为()
A.14件
B.16件
C.24件
D.32件
同类题4
某单位建造一间地面面积为12
m
2
的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度
x
不得超过
米,房屋正面的造价为400元/
m
2
,房屋侧面的造价为150元/
m
2
,屋顶和地面的造价费用合计为5800元,如果墙高为3
m
,且不计房屋背面的费用.
(1)把房屋总造价
表示成
的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最底?最低总造价是多少?
同类题5
某小区有一块三角形空地,如图△
ABC
,其中
AC
=180米,
BC=
90米,∠
C
=90°,开发商计划在这片空地上进行绿化和修建运动场所,在△
ABC
内的
P
点处有一服务站(其大小可忽略不计),开发商打算在
AC
边上选一点
D
,然后过点
P
和点
D
画一分界线与边
AB
相交于点
E
,在△
ADE
区域内绿化,在四边形
BCDE
区域内修建运动场所. 现已知点
P
处的服务站与
AC
距离为10米,与
BC
距离为100米. 设
米,试问
取何值时,运动场所面积最大?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用
利润最大问题