刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数.
(1)当时,判断并证明函数在上单调性。
(2)当时,若关于的方程在上有解,求实数的取值范围。
上一题 下一题 0.99难度 解答题 更新时间:2017-11-30 07:29:14

答案(点此获取答案解析)

同类题1

设函数..
(1)判断函数在上的单调性并用定义加以证明;
(2)求函数在区间上的最大值与最小值.

同类题2

如果函数的定义域为,且存在实常数a,使得对于定义域内任意x,都成立,则称此函数具有“性质”
(1)判断函数是否具有“性质”,若具有“性质”,求出所有a的值的集合;若不具有“性质”,请说明理由;
(2)已知函数具有“性质”,且当时,,求函数在区间上的值域;
(3)已知函数具有“性质”,又具有“性质”,且当时,,若函数的图像与直线有2017个公共点,求实数p的值.

同类题3

已知函数的定义域为
(1)证明在上是增函数;
(2)解不等式

同类题4

已知函数对于一切,都有.
(Ⅰ)求证:在R上是奇函数;
(Ⅱ)若时,,求证在R上是减函数.

同类题5

已知函数,函数是函数的反函数.
求函数的解析式,并写出定义域;
设,判断并证明函数在区间上的单调性:
若中的函数在区间内的图像是不间断的光滑曲线,求证:函数在区间内必有唯一的零点(假设为),且.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)