刷题宝
  • 刷题首页
题库 高中数学

题干

函数对任意的以都有,并且当时, .
(1)判断函数是否为奇函数;
(2)证明:在R上是增函数;
(3)解不等式.
上一题 下一题 0.99难度 解答题 更新时间:2018-11-02 10:14:18

答案(点此获取答案解析)

同类题1

已知函数.
(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);
(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;
(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.

同类题2

已知函数,则(  )
A.是奇函数,且在上单调递增
B.是奇函数,且在上单调递减
C.是偶函数,且在上单调递增
D.是偶函数,且在上单调递减

同类题3

已知定义在的函数的导函数,且满足,,则的解集为__________.

同类题4

设函数是奇函数,在内是增函数,又,则的

解集是(   ).

A.B.
C.D.

同类题5

已知,函数.
(1)当时,证明是奇函数;
(2)当时,求函数的单调区间;
(3)当时,求函数在上的最小值.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 函数单调性的应用
  • 抽象函数的奇偶性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)