刷题宝
  • 刷题首页
题库 高中数学

题干

设函数f(x)=lg,(a∈R),且f(1)=0.
(Ⅰ)求a的值;
(Ⅱ)求f(x)的定义域;
(Ⅲ)判断f(x)在区间(0,+∞)上的单调性,并用单调性定义证明.
上一题 下一题 0.99难度 解答题 更新时间:2019-02-13 05:39:08

答案(点此获取答案解析)

同类题1

根据条件求下列各函数的解析式:
(1)已知函数f(x+1)=3x+2,则f(x)的解析式;
(2)已知是一次函数,且满足,求的解析式;
(3)已知满足,求的解析式.

同类题2

已知f(x+4)+f(x-1)=x2-2x,其中f(x)是二次函数,求函数f(x)的解析式.

同类题3

已知函数f(x)=x2+px+q满足f(1)=f(2)=0,则f(-1)的值是(  )
A.5B.-5
C.6D.-6

同类题4

已知是函数图象上的三点,它们的横坐标依次为其中e=2.7128…为自然对数的底数.
(1)求△ABC面积关于的函数关系式;
(2)用单调性的定义证明函数在上是增函数

同类题5

已知一次函数满足且
(1)求解析式;
(2)当时,求的值域;
(3)若方程没有实数根,求实数的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数及其表示
  • 函数的解析式
  • 已知函数类型求解析式
  • 定义法判断函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)