刷题宝
  • 刷题首页
题库 高中数学

题干

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若是上的有界函数,且的上界为3,求实数的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2019-11-27 08:42:29

答案(点此获取答案解析)

同类题1

已知函数,.
(1)判断并证明的单调性,并求出的最值;
(2)当时,的图象恒在图象的上方,试确定实数的范围.

同类题2

已知函数.
(1)当时,利用函数单调性的定义判断并证明的单调性,并求其值域;
(2)若对任意,求实数的取值范围.

同类题3

已知函数
(1)求函数在区间上的最小值;
(2)求函数的最大值.

同类题4

函数(且)在上的最大值与最小值之和为,则的值为________________.

同类题5

设函数定义在上,对于任意实数,,恒有,且当时,.
(1)求的值.
(2)求证:对任意的,有.
(3)证明:在上是减函数.
(4)设集合,,且,求实数的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的最值
  • 利用函数单调性求最值
  • 根据函数的最值求参数
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)