刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数.
(1)判断函数的奇偶性;
(2)试判断在区间上的单调性,并用单调性定义证明;
(3)求函数在区间上的最值.
上一题 下一题 0.99难度 解答题 更新时间:2019-11-28 11:45:43

答案(点此获取答案解析)

同类题1

设是实数,,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意,在上为单调递增函数;
(3)若函数为奇函数,且不等式对任意恒成立,求实数的取值范围.

同类题2

已知函数.
(1)将函数写成分段函数的形式,并作出此函数的图象;
(2)判断函数在上的单调性,并加以证明;
(3)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

同类题3

设为奇函数,为常数.
(1)求证:是上的增函数;
(2)若对于区间上的每一个值,不等式恒成立,求实数取值范围.

同类题4

已知函数,其中a为常数
若,写出函数的单调递增区间不需写过程;
判断函数的奇偶性,并给出理由;
若对任意实数x,不等式恒成立,求实数a的取值范围.

同类题5

下列函数中是偶函数并且在内单调递增的是(   )
A.B.
C.D.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)