刷题首页
题库
高中数学
题干
定义在
上的函数
满足:①任意
,
都有
;②
时,有
.
(1)判定
在
上的奇偶性,并说明理由;
(2)判定
在
上的单调性,并给出证明.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-03 09:56:17
答案(点此获取答案解析)
同类题1
设函数
的定义域是
,且对任意的正实数
x
,
y
都有
恒成立.已知
,且
时,
(1)求
的值;
(2)判断
在
上的单调性,并给出你的证明;
(3)解不等式
.
同类题2
下列函数中,在区间(0,+∞)上是增函数的是( )
A.
B.
C.
D.
同类题3
下列函数中,既是偶函数又在
上单调递减的函数是( )
A.
B.
C.
D.
同类题4
已知函数
是奇函数,且
时,有
,
,则不等式
的解集为____.
同类题5
设函数
.
(1)求函数
的值域和零点;
(2)请判断函数
的奇偶性和单调性,井给予证明.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
函数奇偶性的定义与判断