刷题首页
题库
高中数学
题干
已知定义域为
的函数
对任意实数
,
满足:
,且
,
,并且当
时,
.给出如下结论:①函数
是偶函数;②函数
在
上单调递增;③函数
是以2为周期的周期函数;④
.其中正确的结论是( )
A.①②
B.②③
C.①④
D.③④
上一题
下一题
0.99难度 单选题 更新时间:2019-12-08 08:12:27
答案(点此获取答案解析)
同类题1
设函数
是奇函数(
都是整数)且
,
;
(1)求
的值;
(2)当
,
的单调性如何?用单调性定义证明你的结论.
同类题2
函数
,
,
,
中,在区间(0,
)上为减函数的是
A.
B.
C.
D.
同类题3
已知函数
(其中
为常数)的图象经过
两点.
(1)判断并证明函数
的奇偶性;
(2)证明函数
在区间
上单调递增.
同类题4
如果函数
对定义域
内的任意两个不相等的实数
,都有
,则称函数
在定义域
内为“
”函数.给出函数:
①
;
②
;
③
;
④
.
以上函数为“
”函数的序号是
____________
.
同类题5
下列函数中,在定义域内是偶函数,且值域为
的是()
A.
B.
C.
D.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
函数奇偶性的定义与判断