刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数=且为自然对数的底数为奇函数
(1)求的值;
(2)判断的单调性并证明.
(3)是否存在实数,使不等式对一切都成立,若存在,求出若不存在,请说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-21 03:10:02

答案(点此获取答案解析)

同类题1

设函数满足:对任意实数都有,且当时,.
(1)证明:在为减函数;又若在上总有成立,试求的最小值;
(2)设函数,当时,解关于的不等式:.

同类题2

定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.
(1)求f(0),f(﹣1)的值;
(2)判断该函数的单调性,并证明;
(3)求不等式f(x+1)<4的解集.

同类题3

设函数的定义域为,且为增函数,已知,对任意,有.
(1)求和的值;
(2)若,求实数的取值范围.

同类题4

已知是定义在上的奇函数,且.
(1)求,的值;
(2)判断函数在上的单调性并用定义进行证明;
(3)解不等式.

同类题5

已知定义在区间(0,+∞)上的函数f(x)满足=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)证明:f(x)为单调递减函数.
(2)若f(3)=-1,求f(x)在2,9上的最小值.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 由奇偶性求函数解析式
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)