刷题宝
  • 刷题首页
题库 高中数学

题干

已知二次函数满足,且.
(1)求函数的解析式;
(2)求在区间上的最大值;
(3)用定义法证明函数在上是增函数.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-23 01:12:29

答案(点此获取答案解析)

同类题1

函数的定义域为,且对任意,有,且当时.
(1)证明:是奇函数;
(2)证明:在上是减函数;
(3)求在区间上的最大值和最小值.

同类题2

已知函数f(x)对任意实数x、y都有f(x+y)=f(x)+f(y),且x>0时,f(x)>0.
(1)证明:f(x)是奇函数;
(2)证明:f(x)在(﹣∞,+∞)内是增函数;
(3)若f(2x)>f(x+3),试求x的取值范围.

同类题3

已知定理:“若为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为
A.
(1)试证明的图象关于点成中心对称;
(2)当时,求证:;
(3)对于给定的,设计构造过程:,…,.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求a的值.

同类题4

已知函数满足:①对任意、且,都有;②对定义域内的任意,都有,则符合上述条件的函数是(  )
A.B.
C.D.

同类题5

下列函数中,既是偶函数,又在 上单调递减的函数是(    )
A.B.C.D.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)