刷题宝
  • 刷题首页
题库 高中数学

题干

已知定义在区间(0,+∞)上的函数f(x)满足=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)证明:f(x)为单调递减函数.
(2)若f(3)=-1,求f(x)在[2,9]上的最小值.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-30 09:09:05

答案(点此获取答案解析)

同类题1

已知函数,若有,则实数的取值范围是__________.

同类题2

已知函数f(x)定义域为R,f(1)=2,f(x)≠0,对任意x,y∈R都有f(x+y)=f(x)•f(y),当x>0时,f(x)>1;
(1)判断f(x)在R上的单调性,并证明;
(2)解不等式f(x)f(x-2)>16.

同类题3

已知f(x)是定义在R上的恒不为零的函数,且对任意的x,y都满足:
(1)求f(0)的值,并证明对任意的,都有;
(2)设当时,都有,证明:f(x)在上是减函数.

同类题4

设函数是定义在上的函数,并且满足下面三个条件:(1)对正数,都有;(2)当时,;(3);
(1)求和的值;
(2)如果不等式成立,求的取值范围;
(3)如果存在正数,使不等式有解,求正数的取值范围.

同类题5

下列函数中,其图象既是轴对称图形又在区间上单调递增的是()
A.B.C.D.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)