刷题首页
题库
高中数学
题干
f
(
x
)是定义在
上的函数,对
x
,
y
∈
R
都有
f
(
x
+
y
)=
f
(
x
)+
f
(
y
),且当
x
>0时,
f
(
x
)<0,
f
(-1)=2.
(1)求证:
f
(
x
)为奇函数;
(2)求证:
f
(
x
)是
R
上的减函数;
(3)求
f
(
x
)在[-2,4]上的最值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-03 08:43:50
答案(点此获取答案解析)
同类题1
已知
,函数
在区间
上的最大值为
,最小值为
,
.
(1)求
的函数表达式;
(2)判断并证明函数
在区间
上的单调性,并求出
的最小值;
(3)设函数
,
,已知
对任意的
恒成立,求实数
的取值范围.
同类题2
如果奇函数
在区间
上是增函数且最大值为5,那么
在区间
上是( )
A.增函数且最小值是-5
B.增函数且最大值是-5
C.减函数且最大值是-5
D.减函数且最小值是-5
同类题3
已知函数
,对任意实数
,
.
(1)
在
上是单调递减的,求实数
的取值范围;
(2)若
对任意
恒成立,求正数
的取值范围.
同类题4
设
,
是
上的函数,且满足
.
(1)求
的值;
(2)证明
在
上是增函数.
同类题5
下列函数中,在其定义域内既是奇函数又是增函数的是( )
A.
B.
C.
D.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
利用函数单调性求最值