刷题首页
题库
高中数学
题干
设
是定义在
上的奇函数,且当
时,
,若对任意的
,不等式
恒成立,则实数
的取值范围是( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-11 05:56:54
答案(点此获取答案解析)
同类题1
已知函数
(
).
(1)判断函数
在
和
的单调性,并用定义证明
在
上的单调性;
(2)若函数
是定义域为
的偶函数,且
时,
,
①当
时,写出
的表达式;
②若函数
有四个零点,写出
的取值范围(不需要说明理由).
同类题2
已知函数
是定义在
R
上的奇函数,且当
时,
(1)求函数
的解析式;
(2)若对任意实数
恒成立,求实数
的取值范围
同类题3
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界,已知函数
.
(Ⅰ)若
是奇函数,求
的值.
(Ⅱ)当
时,求函数
在
上的值域,判断函数
在
上是否为有界函数,并说明理由.
(Ⅲ)若函数
在
上是以
为上界的函数,求实数
的取值范围.
同类题4
已知函数
是定义在
R
上的奇函数.
(Ⅰ)求实数
a
的值.
(Ⅱ)当
时,
恒成立,求实数
m
的取值范围.
同类题5
已知定义在
上的函数
是奇函数.
(1)求
的值,并判断函数
在定义域中的单调性(不用证明);
(2)若对任意的
,不等式
恒成立,求实数
的取值范围.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的奇偶性
由奇偶性求函数解析式