- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 求加权平均数
- 已知一组数据的加权平均数,求未知数据的值
- 运用加权平均数做决策
- 出错情况下的平均数问题
- 观察、猜想与证明
- 实践与应用(暂存)
某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:
(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?
(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
应试者 | 面试 | 笔试 |
甲 | 86 | 90 |
乙 | 92 | 83 |
(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?
(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
在某公司的面试中,李明的得分情况为:个人形象85分,工作能力90分,交际能力80分,己知个人形象、工作能力和交际能力的权重为1: 2: 2,则李明的最终成绩是_____________.
我校开展了主题为“青春·梦想”的艺术作品征集活动、从八年级某六个班中收集到的作品数量(单位:件)统计如图,则这组数据的众数、中位数、平均数依次是( )


A.48,48,48 | B.48,47.5,47.5 |
C.48,48,48.5 | D.48,47.5,48.5 |
下表是某公司员工月收入的资料:
能够反映该公司全体员工月收入水平的统计量是( )
月收入/元 | 45000 | 18000 | 10000 | 5500 | 5000 | 3400 | 3300 | 1000 |
人数 | 1 | 1 | 1 | 3 | 6 | 1 | 11 | 1 |
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数 | B.平均数和中位数 |
C.中位数和众数 | D.平均数和方差 |
某市居民的交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通五项.该市统计局根据当年各项的权重及各项价格的涨幅,计算当年居民交通消费价格的平均涨幅.2017年该市的有关数据如下表所示.
(1)求p的值;
(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.
| 交通工具 | 交通工具使用燃料 | 交通工具维修 | 市内公共交通 | 城市间交通 |
占交通消费的比例 | 22% | 13% | 5% | P | 26% |
相对上一年价格的涨幅 | 1.5% | m% | 2% | 0.5% | 1% |
(1)求p的值;
(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.
在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.
(1)本次调查的样本容量是 ,这组数据的众数为 元;中位数为 元;
(2)求这组数据的平均数;
(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.
(1)本次调查的样本容量是 ,这组数据的众数为 元;中位数为 元;
(2)求这组数据的平均数;
(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.

小明上学期平时成绩为90分,其中成绩为88分,期末成绩为94分,若平时、期中、期末的成绩按3:3:4计算,计算结果作为学期成绩,则小明上学期学期成绩为 分.
小明参加了学校的传统文化课程“射箭”,在一次练习中,他射中的环数和次数如表所示:
那么他射中环数的平均数是_____环.
环数 | 8 | 9 | 10 |
次数 | 4 | 5 | 1 |
那么他射中环数的平均数是_____环.
共享单车逐渐成为市民喜爱的“绿色出行” 方式之一,今年国庆假期某一天,济川中学初三数学社团的同学们随机调查了一个社区,将这天部分出行市民使用共享单车的数据整理成如下统计表.
(1) 这天部分出行市民使用共享单车次数的中位数是__________,众数是__________
(2) 这天部分出行市民平均每人使用共享单车多少次?
(3) 若该社区这天有1500人出行,请你估计这天使用共享单车次数在3次以上(含3 次)的市民有多少人?
使用次数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 11 | 15 | 23 | 28 | 18 | 5 |
(1) 这天部分出行市民使用共享单车次数的中位数是__________,众数是__________
(2) 这天部分出行市民平均每人使用共享单车多少次?
(3) 若该社区这天有1500人出行,请你估计这天使用共享单车次数在3次以上(含3 次)的市民有多少人?