- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 算术平均数
- + 加权平均数
- 求加权平均数
- 已知一组数据的加权平均数,求未知数据的值
- 运用加权平均数做决策
- 出错情况下的平均数问题
- 用计算器求平均数
- 众数
- 统计量的选择
- 观察、猜想与证明
- 实践与应用(暂存)
某单位要招聘1名英语翻译,张明参加招聘考试的成绩如下表所示
若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为_____
| 听 | 说 | 读 | 写 |
张明 | 90 | 80 | 83 | 82 |
若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则张明的平均成绩为_____
某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:
(1)直接写出该同学所得分数的众数与中位数;
(2)计算该同学所得分数的平均数
评委 | 评委1 | 评委2 | 评委3 | 评委4 | 评委5 | 评委6 | 评委7 |
打分 | 6 | 8 | 7 | 8 | 5 | 7 | 8 |
(1)直接写出该同学所得分数的众数与中位数;
(2)计算该同学所得分数的平均数
有甲、乙两班,甲班有m个人,乙班有n个人.在一次考试中甲班平均分是a分,乙班平均分是b分.则甲、乙两班在这次考试中的总平均分是( )
A.![]() | B.![]() | C.![]() | D.![]() |
某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每人采集到5件,则这个小组平均每人采集标本___________件.
“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是( )


A.该学校中参与调查的青年教师人数为40人 |
B.该学校中青年教师2016年平均每人阅读8本书 |
C.该学校中青年教师2016年度看书数量的中位数为4本 |
D.该学校中青年教师2016年度看书数量的众数为4本 |
为了调查某小区居民的用水情况,随机抽查了若干户家庭月用水量,结果如表:

则关于这若干户家庭的月用水量,中位数是______吨,月平均用水_____吨.

则关于这若干户家庭的月用水量,中位数是______吨,月平均用水_____吨.
某公司欲招聘工人,对甲、乙应聘者进行三项测试:语言、创新、综合知识,并按测试得分1∶4∶3的比例确定测试总分,已知甲三项得分分别为86,70,70,乙三项得分分别为84,75,60,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
一次比赛中,5位裁判分别给某位选手打分的情况是:有2人给出9.1分,有2人给出9.3分,有1人给出9.7分,则这位选手的平均得分是________分.
某校在“爱护地球绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树数量情况,将调查数据整理如下表:

则这100名同学平均每人植树________棵.

则这100名同学平均每人植树________棵.