- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- + 算术平均数
- 求一组数据的平均数
- 已知一组数据的平均数,求未知数据的值
- 已知一组数据的平均数,求另一组相关数据的平均数
- 利用平均数做决策
- 加权平均数
- 用计算器求平均数
- 众数
- 统计量的选择
- 观察、猜想与证明
- 实践与应用(暂存)
八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示
如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
平均数 | 85 | 93 | 93 | 86 |
方差 | 3 | 3 | 3.5 | 3.7 |
如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
A.甲 | B.乙 | C.丙 | D.丁 |
某学习小组有5人,在一次数学测验中的成绩分别是102, 106, 100, 105, 102,则他们成绩的平均数_______________
某市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表,关于这组文化程度的人数数据,以下说法正确的是( )
文化程度 | 高中 | 大专 | 本科 | 硕士 | 博士 |
人数 | 9 | 17 | 20 | 9 | 5 |
A.众数是20 | B.中位数是17 | C.平均数是12 | D.方差是26 |
学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.
选手 | 表达能力 | 阅读理解 | 综合素质 | 汉字听写 |
甲 | 85 | 78 | 85 | 73 |
乙 | 73 | 80 | 82 | 83 |
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.





参赛者 | 推荐语 | 读书心得 | 读书讲座 |
甲 | ![]() | ![]() | ![]() |
乙 | ![]() | ![]() | ![]() |
(1)若将三项成绩的平均分作为参赛选手的综合成绩,则甲、乙二人谁最有可能获得大赛一等奖?请通过计算说明理由.
(2)若“推荐语”“读书心得”“读书讲座”的成绩按
