- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 图形的平移、对称与旋转
- + 图形的相似
- 相似图形的相关概念及性质
- 相似三角形
- 位似
- 锐角三角函数
- 投影与视图
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,四边形A1B1C1O,A2B2C2C1,A3B3C3C2均为正方形.点A1,A2,A3和点C1,C2,C3分别在直线y=kx+b(k>0)和x轴上,点B3的坐标是(
,
),则k+b= .



已知直线y=
x+b与x轴,y轴分别交于A,B两点,点D在x轴正半轴,且OD=6,点C,M是线段OD的三等分点(点C在点M的左侧)

(1)若直线AB经过点(4,6)
①求直线AB的解析式;
②求点M到直线AB的距离;
(2)若点Q在x轴上方的直线AB上,且∠CQD是锐角,试探究:在直线AB上是否存在符合条件的点Q,使得sin∠CQD=
?若存在,求出b的取值范围;若不存在,请说明理由.


(1)若直线AB经过点(4,6)
①求直线AB的解析式;
②求点M到直线AB的距离;
(2)若点Q在x轴上方的直线AB上,且∠CQD是锐角,试探究:在直线AB上是否存在符合条件的点Q,使得sin∠CQD=

如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=4,另两边与一次函数y=﹣2x+b的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.
(1)求一次函数的解析式;
(2)当四边形BHGF为正方形时,点F的坐标;
(3)是否存在矩形BHGF与矩形DOHE相似情形?若存在,求出相似比;若不存在,并说明理由.
(1)求一次函数的解析式;
(2)当四边形BHGF为正方形时,点F的坐标;
(3)是否存在矩形BHGF与矩形DOHE相似情形?若存在,求出相似比;若不存在,并说明理由.

(11分)如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.

(1)求证:GD是⊙O的切线;
(2)试判断△DEF的形状,并说明理由;
(3)若OF:OB=1:3,⊙O的半径为3,求AG的长.

(1)求证:GD是⊙O的切线;
(2)试判断△DEF的形状,并说明理由;
(3)若OF:OB=1:3,⊙O的半径为3,求AG的长.
如图,在Rt△ABC中,AC=4,BC=3,若点M、N分别是线段AB、AC上的两个动点,则CM+MN的最小值为__________.


如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为( )


A.2 | B.3 C. ![]() | C.![]() |
如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.

(1)若∠B=60°,求证:AP是⊙O的切线;
(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.

(1)若∠B=60°,求证:AP是⊙O的切线;
(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.
在比例尺为1:100000的地图上,测得A,B两地之间的距离为2cm,则A,B两地之间的实际距离为( )
A.200000cm | B.400000cm |
C.200000000000cm | D.400000000000cm |
如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB·AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=_________.
(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?

图1 图2 图3
(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=_________.
(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?

图1 图2 图3