- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 中心对称图形的识别
- 判断中心对称图形的对称中心
- 在方格纸中补画图形使之成为中心对称图形
- + 中心对称图形规律问题
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
有一组数排成方阵,如图所示,试计算这组数的和.小明想了想,方阵象正方形,正方形是轴对称图形,又是中心对称图形,能否利用轴对称和中心对称的思想来解决方阵的计算问题呢?小明试了试,竟得到了非常巧妙的方法,你能试试看吗?
1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 7 |
4 | 5 | 6 | 7 | 8 |
5 | 6 | 7 | 8 | 9 |
如图,矩形纸片
中,
.第一次将纸片折叠,使点
与点
重合,折痕与
交于点
;设
的中点为
,第二次将纸片折叠使点
与点
重合,折痕与
交于点
;设
的中点为
,第三次将纸片折叠使点
与点
重合,折痕与
交于点O3,… .按上述方法折叠,第n次折叠后的折痕与BD交于点On,
则BOn=

















则BOn=

已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有________________个;第2014个图形中直角三角形的个数有_________________个.

对于正n边形,当边数n为奇数时,它是______图形,但不是______图形;当边数n为偶数时,它既是______图形,又是______图形.正n边形有______条对称轴.
若两个图形成中心对称,则下列说法:
①对应点的连线必经过对称中心;②这两个图形的形状和大小完全相同;
③这两个图形的对应线段一定相等;④将一个图形绕对称中心旋转某个角度后必与另一个图形重合.
其中正确的有( )
①对应点的连线必经过对称中心;②这两个图形的形状和大小完全相同;
③这两个图形的对应线段一定相等;④将一个图形绕对称中心旋转某个角度后必与另一个图形重合.
其中正确的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1 B 1 C 1 D 1 ;把正方形A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形A 2 B 2 C 2 D 2 (如图(2));以此下去,则正方形A n B n C n D n 的面积为________. 

如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且
与△ABC关于原点O成中心对称.
(1)请直接写出A1的坐标 ;并画出
.
(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.
(3)若
和△A2B2C2关于某一点成中心对称,则对称中心的坐标为 .

(1)请直接写出A1的坐标 ;并画出

(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.
(3)若


如图分别是五角星、六角星、七角星、八角星的图形;

(1)请问其中是中心对称图形的是哪些?
(2)依次类推,36角星是不是中心对称图形?
(3)怎样判断一个n角星是否是中心对称图形?

(1)请问其中是中心对称图形的是哪些?
(2)依次类推,36角星是不是中心对称图形?
(3)怎样判断一个n角星是否是中心对称图形?