- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 与三角形中位线有关的求解问题
- 三角形中位线与三角形面积问题
- 与三角形中位线有关的证明
- + 三角形中位线的实际应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接D

A. (1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE= ![]() (2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明; (3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为______. |

如图,已知
周长为1,连接
三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,则第2020个三角形的周长是__________.



如图,在矩形ABCD中,点E为AD的中点,不用圆规、量角器等工具,只用无刻度的直尺作图.
(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,连接AC,在AC上取两点P,Q,使P,Q是AC的三等分点.
(1)如图1,在BC上找点F,使点F是BC的中点;
(2)如图2,连接AC,在AC上取两点P,Q,使P,Q是AC的三等分点.

如图,为了测量池塘边
、
两地之间的距离,在线段
的同侧取一点
,连结
并延长至点
,连结
并延长至点
,使得
、
分别是
、
的中点,若
,则线段
的长度是( )
















A.![]() | B.![]() | C.![]() | D.![]() |
如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()


A.15m | B.25m | C.30m | D.20m |