八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度
,他们进行了如下操作:①测得
的长为
米(注:
);②根据手中剩余线的长度计算出风筝线
的长为
米;③牵线放风筝的小明身高
米.

(1)求风筝的高度
.
(2)过点
作
,垂足为
,求
、
.








(1)求风筝的高度

(2)过点





一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )


A.50° | B.60° | C.70° | D.80° |
通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形——两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.
(1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?
(填“是”或不是);
(2)若某三角形的三边长分别为1、
、2,则该三角形是不是奇异三角形,请做出判断并写出判断依据;
(3)在
中,两边长分别为
,且且
,则这个三角形是不是奇异三角形?请做出判断并写出判断依据;
探究:Rt
中,
,且b>a,若Rt
是奇异三角形,求
.
(1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?
(填“是”或不是);
(2)若某三角形的三边长分别为1、

(3)在



探究:Rt




如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是( )


A.60° | B.50° | C.45° | D.30° |
《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中第九卷《勾股》主要讲述了以测量问题为中心的直角 三角形三边互求,之中记载了一道有趣的“折竹抵地”问题:
“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”
译文:“一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为多少尺?”(备注:1丈=10尺)
如果设竹梢到折断处的长度为
尺,那么折断处到竹子的根部用含
的代数式可表示为__________尺,根据题意,可列方程为_______________________.

“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”
译文:“一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为多少尺?”(备注:1丈=10尺)
如果设竹梢到折断处的长度为




在
纸片中,
,
,
.如图,直角顶点
在原点,点
在
轴负半轴上,当点
在
轴上向上移动时,点
也随之在
轴上向右移动,当点
到达原点时,点
停止移动.在移动过程中,点
到原点的最大距离是__________ .















如图,在长方形ABCD中,AB=5,AD=12,点E是BC上一点,将△ABE沿AE折叠,使点B落在点F处,连接CF,当△CEF为直角三角形时,CF的长为________。
