如图,在△ABC中,

(1)若AE平分∠BAC,AD⊥BC于点D,∠C=74°,∠B=46°,求∠DAE的度数.
(2)若AE是△ABC的中线,BC=4,△ABE的面积为4,EC=3DE,求△ABC面积和△ADE的面积.

(1)若AE平分∠BAC,AD⊥BC于点D,∠C=74°,∠B=46°,求∠DAE的度数.
(2)若AE是△ABC的中线,BC=4,△ABE的面积为4,EC=3DE,求△ABC面积和△ADE的面积.
如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.

(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;
(2)若△ABC的面积为40,BD=5,求AF的长.

(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;
(2)若△ABC的面积为40,BD=5,求AF的长.
阅读下列材料,并完成相应的任务.
古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S=
(其中a,b,c是三角形的三边长,
,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴
=6
∴S=
=
=6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
根据上述材料,解答下列问题:
如图,在△ABC中,BC=7,AC=8,AB=9
(1)用海伦公式求△ABC的面积;
(2)如图,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.
古希腊的几何学家海伦在他的著作《度量论》一书中给出了利用三角形三边之长求面积的公式﹣﹣﹣﹣海伦公式S=


例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴

∴S=


事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
根据上述材料,解答下列问题:
如图,在△ABC中,BC=7,AC=8,AB=9
(1)用海伦公式求△ABC的面积;
(2)如图,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.

已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC的高为h.

(1)若点P在一边BC上,如图①,此时h3=0,求证:h1+h2+h3=h;
(2)当点P在△ABC内,如图②,以及点P在△ABC外,如图③,这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.

(1)若点P在一边BC上,如图①,此时h3=0,求证:h1+h2+h3=h;
(2)当点P在△ABC内,如图②,以及点P在△ABC外,如图③,这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h1,h2,h3与h之间又有怎样的关系,请说出你的猜想,并说明理由.
如图,△ABC的面积为16,点D是BC边上一点,且
,点G是AB边上一点,点H在△ABC内部,且四边形BDHG 是平行四边形,则图中阴影部分的面积是( )



A.3 | B.4 | C.5. | D.6 |