- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,用总长为80米的篱笆,在一面靠墙的空地上围成如图所示的花圃ABCD ,花圃中间有一条2米宽的人行通道,园艺师傅用篱笆围成了四个形状、大小一样的鲜花种植区域,鲜花种植总面积为192平方米,花圃的一边靠墙,墙长20米,求AB和BC的长.

某礼品店生产的礼品盒分为六个档次,第一档(最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的礼品盒,每件利润增加2元.
(1)若生产的某批礼品盒每件利润为14元,问生产的是第几档次的产品?
(2)由于生产工序不同,礼品盒每提升一个档次,一天会少生产4件,若生产的某档次产品一天的利润为1080元,问生产的是第几档次的产品?
(1)若生产的某批礼品盒每件利润为14元,问生产的是第几档次的产品?
(2)由于生产工序不同,礼品盒每提升一个档次,一天会少生产4件,若生产的某档次产品一天的利润为1080元,问生产的是第几档次的产品?
某商店以每件50元的价格购进800件
恤,第一个月以单价80元销售,售出了200件.第二个月如果单价不变,预计仍可售出200件,该商店为增加销售量决定降价销售,根据市场调查,单价每降低1元,可多销售出10件,但最低单价应不低于50元,第二个月结束后,该商店对剩余的T恤一次性清仓,清仓时单价为40元.设第二个月单价降低
元,
(1)填表(用含
的代数式完成表格中的①②③处)
(2)如果该商店希望通过销售这800件
恤获利9000元,那么第二个月单价降低多少元?


(1)填表(用含

时间 | 第一个月 | 第二个月 | 清仓 |
单价(元) | 80 | _______ | 40 |
销售量(件) | 200 | _______ | _______ |
(2)如果该商店希望通过销售这800件

为了展示台州市的自然、人文风光,提高城市知名度,更好地彰显马拉松体育精神,台州市连续三年举办马拉松邀请赛,参加人数逐年增加,2015年参加人数约是10000人,到2017年增加到15000人.设参加人数每年增长率为x,由题意,所列方程正确的是( )
A.10000(1+x)=15000 | B.10000(1+x)2=15000 |
C.10000(1+2x)=15000 | D.15000(1+x)2=10000 |
在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加美感,按此比例,如果雕像的身高为
米,设雕像的上部为
米,根据其比例关系可得其方程应为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
在一块面积为
的矩形材料的四角,各剪掉一个大小相同的正方形(剪掉的正方形作废料处理不再使用),做成一个无盖的长方体盒子,要求盒子长为
,宽为高的2倍,则盒子的高为______
.



今年国庆期间解放碑、洪崖洞、朝天门、来福士、长嘉汇等景点人员密集;穿楼而过的轻轨、洪崖洞、灯光秀……吸引着海量游客前来重庆打卡.位于洪崖洞的重庆知名火锅小天鹅火锅在节日期间每天也人满为患,其中鸳鸯火锅和红汤火锅最受游客青睐.在中秋节期间,前来就餐选择鸳鸯火锅和红汤火锅的游客共有2000名,鸳鸯火锅和红汤火锅的人均消费分别为180元和120元.
(1)中秋节期间,若选择红汤火锅的人数不超过鸳鸯火锅人数的1.5倍.求至少有多少人选择鸳鸯火锅?
(2)“国庆”节期间,前来就餐的游客人数有所下降,与(1)问中选择鸳鸯火锅的人数最少时相比,选择两种火锅的人数均下降了a%;人均消费与中秋节期间相比均有所上升,其中鸳鸯火锅的人均消费上涨了a%,红汤火锅的人均消费上涨了
a%,最终“国庆”节期间两种火锅的总销售额与(1)问中选择鸳鸯火锅的人数最少时的两种火锅的总销售额持平,求a的值.
(1)中秋节期间,若选择红汤火锅的人数不超过鸳鸯火锅人数的1.5倍.求至少有多少人选择鸳鸯火锅?
(2)“国庆”节期间,前来就餐的游客人数有所下降,与(1)问中选择鸳鸯火锅的人数最少时相比,选择两种火锅的人数均下降了a%;人均消费与中秋节期间相比均有所上升,其中鸳鸯火锅的人均消费上涨了a%,红汤火锅的人均消费上涨了
